metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Butane-1,4-diammonium bis(pyridine-2,6-dicarboxylato- $\kappa^3 O^2$,N,O⁶)cadmate(II) dihydrate

Masoumeh Tabatabaee,^a* Hossein Aghabozorg,^b Roghaieh Nasrolahzadeh,^a Leila Roshan^b and Najmeh Firoozi^b

^aDepartment of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran, and ^bFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran Correspondence e-mail: tabatabaee45m@yahoo.com

Received 27 August 2008; accepted 13 September 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.067; data-to-parameter ratio = 19.0.

In the title compound, $(C_4H_{14}N_2)[Cd(C_7H_3NO_4)_2]\cdot 2H_2O$, the Cd^{II} ion is coordinated by four O atoms [Cd-O =2.2399 (17) - 2.2493 (17) Å and two N atoms [Cd-N = 2.3113 (15) and 2.3917 (15) Å] from two tridentate pyridine-2,6-dicarboxylato ligands in a distorted octahedral geometry. The uncoordinated water molecules are involved in O- $H \cdots O$ and $N - H \cdots O$ hydrogen bonds, which contribute to the formation of a three-dimensional supramolecular structure, along with $\pi - \pi$ stacking interactions [centroid–centroid distances of 3.5313 (13) and 3.6028 (11) Å between the pyridine rings of neighbouring dianions].

Related literature

For related literature, see: Aghabozorg, Firoozi et al. (2008); Aghabozorg, Manteghi et al. (2008); Odoko et al. (2002).

Experimental

Crystal data

(C₄H₁₄N₂)[Cd(C₇H₃NO₄)₂]·2H₂O $M_r = 568.81$ Monoclinic, $P2_1/c$ a = 11.0357 (4) Å b = 28.7181 (10) Å c = 7.1116 (3) Å $\beta = 108.544 (1)^{\circ}$

Data collection

Bruker SMART APEXII CCD area detector diffractometer Absorption correction: multi-scan (APEX2; Bruker, 2005) $T_{\min} = 0.802, \ T_{\max} = 0.944$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	298 parameters
$wR(F^2) = 0.066$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
5676 reflections	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3NA\cdotsO2W$	0.89	1.90	2.782 (2)	169
$N3-H3NB\cdots O7^{i}$	0.91	1.93	2.823 (2)	166
N3−H3NC···O4 ⁱⁱ	0.90	1.93	2.784 (2)	159
N4–H4NA···O8 ⁱⁱ	0.91	1.99	2.821 (3)	152
$N4-H4NB\cdotsO6^{iii}$	0.94	1.93	2.865 (2)	176
$N4 - H4NC \cdots O1W^{iv}$	0.86	1.94	2.797 (2)	175
$O1W - H1WA \cdots O5^{iv}$	0.76	1.92	2.678 (2)	173
$O1W - H1WB \cdots O2$	0.79	1.87	2.653 (2)	172
$O2W - H2WA \cdots O4^{v}$	0.82	1.99	2.809 (2)	175
$O2W - H2WB \cdots O1W$	0.82	1.97	2.781 (2)	170

 $V = 2136.82 (14) \text{ Å}^3$

25988 measured reflections

5676 independent reflections

4655 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 1.09 \text{ mm}^{-3}$

T = 100 (2) K $0.28 \times 0.07 \times 0.05 \text{ mm}$

 $R_{\rm int} = 0.044$

Z = 4

Symmetry codes: (i) x - 1, y, z; (ii) x - 1, y, z + 1; (iii) $x, -y + \frac{3}{2}, z + \frac{3}{2}$; (iv) x, y, z + 1; (v) -x + 1, -y + 2, -z.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2442).

References

Aghabozorg, H., Firoozi, N., Roshan, L., Attar Gharamaleki, J. & Ghadermazi, M. (2008). Acta Cryst. E64, m743-m744.

Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Odoko, M., Kusano, A. & Okabe, N. (2002). Acta Cryst. E58, m25-m27. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, m1290 [doi:10.1107/S1600536808029395]

Butane-1,4-diammonium bis(pyridine-2,6-dicarboxylato- $\kappa^3 O^2$,N, O^6)cadmate(II) dihydrate

M. Tabatabaee, H. Aghabozorg, R. Nasrolahzadeh, L. Roshan and N. Firoozi

Comment

Our research group has recently focused on a one-pot synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes. In connection with this research area, pyridine2,6-dicarboxylic acid (pydcH₂) has been selected as a proton donor and different amines as acceptor agents, and several metal complexes of these systems have been synthesized and their X-ray crystal structures reported (Aghabozorg, Firoozi *et al.*, 2008; Aghabozorg, Manteghi *et al.*, 2008). The major intermolecular interactions that are required in the preparation of supramolecular metal complexes have been present in most of these complexes. In order to develop novel systems, we report here a new complex of Cd^{II} with butane-1,4-diammonium pyridine-2,6-dicarboxylato as a proton transfer compound.

The title compound, I, consists of $[Cd(pydc)_2]^{2-}$ anion $(pydcH_2= pyridine-2,6-dicarboxylic acid)$, $(bdaH_2)^{2+}$ cation (bda=butane-1,4-diamine) and two uncoordinated water molecules (Fig. 1). Cd^{II} atom is six-coordinated by the four O and two N atoms from two $(pydc)^{2-}$ ligands. The coordinating bond lengths (Cd—N 2.2399 (17) and 2.2493 (17) Å, and Cd—O 2.3113 (15), 2.3370 (15), 2.3433 (14) and 2.3917 (15) Å) lie in the normal ranges corresponding to those in realated complexes of Cd^{II} containing pyridine-2,6-dicarboxylate as a ligand (*Odoko et al., 2002*). The bond lengths and bond angles around of metal center indicate that the geometric arrangement of six donor atoms around the Cd^{II} atom is distorted octahedral.

The N1—Cd1—N2 angle (170.36 (6)°) deviates slightly from linearity. The O1–Cd1–O5 and O3–Cd1–O7 bond angles and O1–Cd1–O5—C13 and O1–Cd1–O7—C14 torsion angles are 89.41 (6)°, 94.81 (5)°, -101.88 (14)° and 105.15 (14)°, respectively, indicating that two dianionic(pydc)^{2–} fragments are almost perpendicular to each other. The bond angles O1–Cd1–O3 [141.50 (5)°] and O5–Cd1–O7 [141.06 (5)°] indicate that the four carboxylate groups of the two dianions are oriented in a flattened tetrahedral arrangement around the Cd^{II} atom.

In the crystal, there are O—H…O and N—H…O hydrogen bonding interactions between the cations, anions and uncoordinated water molecules (Table 1). The water molecules acts also as bridging agents and link the cations to anions *via* hydrogen bonds (Fig. 1) and therefore, the spaces between two layers of $[Cd(pydc)_2]^{2-}$ anions are filled with $(badH_2)^{2+}$ cations and water molecules. There are also π - π stacking interactions (Fig. 2) between the aromatic rings of the coordinated $(pydc)^{2-}$ anions proved by short distances Cg1...Cg1(1-x,2-y,-z) of 3.5313 (13) Å (Cg1 is a centroid of N1/C2—C5), and Cg2...Cg2(x,3/2-y,1/2+z) of 3.6028 (11) Å (Cg2 is a centroid of N2/C8—C12). Ion pairing, hydrogen bonding and π - π stacking interactions stabilize the crystal packing.

Experimental

A mixture of an aqueous solution (30 ml) of the proton transfer compound ($bdaH_2$)(pydc) (100 mg, 0.4 mmol) and cadmium(II) nitrate Cd(NO₃)₂. 4H₂O, (60 mg, 0.2 mmol) were stirred at 0°C. Colorless crystals of the title compound were obtained after 2 months at room temperature.

Refinement

C-bound H atoms were placed in calculated positions. Positions of N- and O-bound H atoms were found on a difference Fourier map. All hydrogen atoms were refined in riding model approximation, with $U_{iso}(H)$ equal to 1.2 $U_{eq}(C)$ and 1.5 $U_{eq}(N, O)$.

Figures

Fig. 1. A portion of the crystal structure of **I** showing the atomic numbering, hydrogen bonds (dashed lines) and 50% displacement ellipsoids [symmetry codes: (A) x - 1,y,z; (B) x - 1,y,z + 1; (C) x,y+3/2,z+3/2; (D) x,y,z+1; (E) -x + 1,-y+2,-z].

Fig. 2. A portion of the crystal packing showing the π - π stacking interactions between the aromatic rings of the pydc²- dianions as dashed lines.

Butane-1,4-diammonium bis(pyridine-2,6-dicarboxylato- $\kappa^3 O^2$, N,O⁶)cadmate(II) dihydrate

Crystal data	
$(C_4H_{14}N_2)[Cd(C_7H_3NO_4)_2]\cdot 2H_2O$	$F_{000} = 1152$
$M_r = 568.81$	$D_{\rm x} = 1.768 { m Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6372 reflections
a = 11.0357 (4) Å	$\theta = 2.8 - 32.1^{\circ}$
b = 28.7181 (10) Å	$\mu = 1.09 \text{ mm}^{-1}$
c = 7.1116 (3) Å	T = 100 (2) K
$\beta = 108.5440 \ (10)^{\circ}$	Prism, colourless
$V = 2136.82 (14) \text{ Å}^3$	$0.28\times0.07\times0.05~mm$
Z = 4	

Data collection

Bruker SMART APEX II CCD area detector diffractometer	5676 independent reflections
Radiation source: fine-focus sealed tube	4655 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.044$
T = 100(2) K	$\theta_{\text{max}} = 29.0^{\circ}$
phi and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (APEX2; Bruker, 2005)	$h = -15 \rightarrow 15$
$T_{\min} = 0.802, \ T_{\max} = 0.944$	$k = -39 \rightarrow 39$
25988 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: mixed
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.066$	$w = 1/[\sigma^2(F_o^2) + (0.0369P)^2 + 0.2951P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
5676 reflections	$\Delta \rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$
298 parameters	$\Delta \rho_{min} = -0.71 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	у	Z	$U_{iso}*/U_{eq}$
653305 (14)	0.865460 (5)	0.02554 (2)	0.01027 (5)
54740 (15)	0.88396 (5)	0.2485 (2)	0.0163 (3)
49107 (15)	0.94185 (5)	0.4137 (2)	0.0177 (3)
74579 (14)	0.90014 (5)	-0.1942 (2)	0.0133 (3)
80812 (14)	0.96709 (5)	-0.2947 (2)	0.0148 (3)
46311 (14)	0.83512 (5)	-0.1895 (2)	0.0130 (3)
	653305 (14) 54740 (15) 49107 (15) 74579 (14) 80812 (14) 46311 (14)	<i>y</i> 653305 (14) 0.865460 (5) 54740 (15) 0.88396 (5) 49107 (15) 0.94185 (5) 74579 (14) 0.90014 (5) 80812 (14) 0.96709 (5) 46311 (14) 0.83512 (5)	y z 653305 (14) 0.865460 (5) 0.02554 (2) 654740 (15) 0.88396 (5) 0.2485 (2) 49107 (15) 0.94185 (5) 0.4137 (2) 74579 (14) 0.90014 (5) -0.1942 (2) 80812 (14) 0.96709 (5) -0.2947 (2) 46311 (14) 0.83512 (5) -0.1895 (2)

O6	0.35049 (14)	0.77036 (5)	-0.2989 (2)	0.0134 (3)
07	0.85227 (14)	0.84106 (5)	0.2568 (2)	0.0135 (3)
08	0.97512 (14)	0.77840 (5)	0.3736 (2)	0.0140 (3)
N1	0.66045 (16)	0.94278 (6)	0.0692 (2)	0.0107 (3)
N2	0.66196 (16)	0.78722 (6)	0.0372 (2)	0.0094 (3)
C1	0.61249 (19)	0.96095 (7)	0.2039 (3)	0.0106 (4)
C2	0.6181 (2)	1.00835 (7)	0.2422 (3)	0.0130 (4)
H2A	0.5863	1.0207	0.3381	0.016*
C3	0.6726 (2)	1.03710 (7)	0.1332 (3)	0.0144 (4)
H3A	0.6780	1.0690	0.1560	0.017*
C4	0.7193 (2)	1.01781 (7)	-0.0105 (3)	0.0137 (4)
H4A	0.7546	1.0366	-0.0861	0.016*
C5	0.71190 (19)	0.96990 (7)	-0.0379 (3)	0.0106 (4)
C6	0.5459 (2)	0.92595 (7)	0.2994 (3)	0.0119 (4)
C7	0.75859 (19)	0.94381 (7)	-0.1888 (3)	0.0108 (4)
C8	0.56098 (19)	0.76257 (7)	-0.0730 (3)	0.0096 (4)
C9	0.5627 (2)	0.71438 (7)	-0.0708 (3)	0.0119 (4)
H9A	0.4929	0.6975	-0.1489	0.014*
C10	0.67082 (19)	0.69158 (7)	0.0503 (3)	0.0120 (4)
H10A	0.6738	0.6592	0.0553	0.014*
C11	0.7742 (2)	0.71772 (7)	0.1635 (3)	0.0117 (4)
H11A	0.8473	0.7032	0.2451	0.014*
C12	0.76656 (19)	0.76590 (7)	0.1527 (3)	0.0100 (4)
C13	0.44812 (19)	0.79128 (7)	-0.1984 (3)	0.0106 (4)
C14	0.87469 (19)	0.79762 (7)	0.2713 (3)	0.0108 (4)
N3	-0.04463 (17)	0.90758 (6)	0.5575 (2)	0.0125 (3)
H3NA	0.0079	0.9221	0.5045	0.019*
H3NB	-0.0818	0.8834	0.4763	0.019*
H3NC	-0.1029	0.9278	0.5727	0.019*
N4	0.20003 (17)	0.80268 (6)	1.2890 (3)	0.0129 (4)
H4NA	0.1477	0.7916	1.3553	0.019*
H4NB	0.2523	0.7791	1.2663	0.019*
H4NC	0.2430	0.8260	1.3538	0.019*
C15	0.0263 (2)	0.89086 (8)	0.7619 (3)	0.0140 (4)
H15B	-0.0345	0.8793	0.8238	0.017*
H15C	0.0716	0.9169	0.8404	0.017*
C16	0.1212 (2)	0.85258 (8)	0.7631 (3)	0.0131 (4)
H16B	0.1777	0.8631	0.6915	0.016*
H16C	0.0753	0.8255	0.6947	0.016*
C17	0.2010 (2)	0.83878 (8)	0.9735 (3)	0.0137 (4)
H17A	0.2623	0.8152	0.9671	0.016*
H17B	0.2482	0.8657	1.0409	0.016*
C18	0.11864 (19)	0.82013 (8)	1.0923 (3)	0.0130 (4)
H18A	0.0632	0.8447	1.1110	0.016*
H18B	0.0652	0.7950	1.0195	0.016*
O1W	0.32860 (14)	0.88159 (5)	0.4844 (2)	0.0142 (3)
H1WA	0.3663	0.8704	0.5821	0.021*
H1WB	0.3741	0.8990	0.4520	0.021*
O2W	0.12203 (15)	0.94242 (6)	0.3694 (2)	0.0211 (4)

H2WA	0.1440	0.9692	0.3542	0.032*
H2WB	0.1883	0.9273	0.4046	0.032*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01105 (8)	0.00794 (7)	0.01223 (8)	-0.00025 (6)	0.00430 (5)	-0.00009 (6)
01	0.0229 (8)	0.0108 (7)	0.0201 (8)	0.0005 (6)	0.0135 (7)	0.0013 (6)
O2	0.0222 (8)	0.0159 (8)	0.0205 (8)	-0.0007 (6)	0.0148 (7)	0.0002 (6)
03	0.0156 (7)	0.0113 (7)	0.0159 (7)	-0.0016 (6)	0.0091 (6)	-0.0021 (6)
O4	0.0179 (8)	0.0141 (8)	0.0159 (7)	-0.0007 (6)	0.0102 (6)	0.0015 (6)
05	0.0121 (7)	0.0112 (7)	0.0144 (7)	0.0005 (6)	0.0025 (6)	0.0019 (6)
06	0.0105 (7)	0.0154 (8)	0.0126 (7)	-0.0021 (6)	0.0012 (6)	-0.0001 (6)
07	0.0126 (7)	0.0115 (7)	0.0144 (7)	-0.0007 (6)	0.0015 (6)	-0.0006 (6)
08	0.0094 (7)	0.0175 (8)	0.0138 (7)	0.0000 (6)	0.0017 (6)	0.0019 (6)
N1	0.0109 (8)	0.0102 (8)	0.0118 (8)	0.0001 (6)	0.0048 (7)	0.0001 (6)
N2	0.0100 (8)	0.0106 (8)	0.0079 (8)	0.0002 (6)	0.0033 (6)	-0.0012 (6)
C1	0.0101 (9)	0.0128 (10)	0.0089 (9)	0.0011 (8)	0.0030 (7)	0.0005 (8)
C2	0.0135 (10)	0.0135 (10)	0.0126 (10)	-0.0012 (8)	0.0051 (8)	-0.0041 (8)
C3	0.0179 (11)	0.0110 (10)	0.0161 (10)	-0.0017 (8)	0.0080 (8)	-0.0017 (8)
C4	0.0141 (10)	0.0130 (10)	0.0152 (10)	-0.0025 (8)	0.0062 (8)	0.0007 (8)
C5	0.0095 (9)	0.0122 (10)	0.0108 (9)	0.0000 (7)	0.0042 (7)	0.0006 (7)
C6	0.0134 (10)	0.0120 (10)	0.0100 (9)	0.0006 (8)	0.0034 (8)	0.0029 (8)
C7	0.0094 (9)	0.0116 (10)	0.0115 (9)	-0.0002 (7)	0.0035 (8)	-0.0013 (7)
C8	0.0099 (10)	0.0123 (10)	0.0082 (9)	-0.0004 (7)	0.0050 (7)	0.0016 (7)
C9	0.0138 (10)	0.0121 (10)	0.0110 (9)	-0.0015 (8)	0.0059 (8)	-0.0005 (8)
C10	0.0160 (11)	0.0092 (9)	0.0122 (10)	0.0005 (8)	0.0066 (8)	0.0002 (7)
C11	0.0118 (10)	0.0133 (10)	0.0109 (9)	0.0036 (8)	0.0046 (8)	0.0030 (8)
C12	0.0102 (9)	0.0129 (10)	0.0078 (9)	0.0002 (7)	0.0040 (7)	0.0006 (7)
C13	0.0104 (10)	0.0134 (10)	0.0091 (9)	0.0009 (8)	0.0045 (8)	0.0013 (7)
C14	0.0111 (10)	0.0135 (10)	0.0091 (9)	-0.0017 (8)	0.0050 (8)	-0.0005 (7)
N3	0.0126 (8)	0.0126 (9)	0.0126 (8)	-0.0006 (7)	0.0046 (7)	0.0000 (7)
N4	0.0126 (9)	0.0141 (9)	0.0121 (8)	0.0005 (7)	0.0042 (7)	0.0002 (7)
C15	0.0133 (10)	0.0181 (11)	0.0108 (10)	-0.0004 (8)	0.0042 (8)	-0.0019 (8)
C16	0.0122 (10)	0.0155 (10)	0.0126 (10)	0.0012 (8)	0.0054 (8)	0.0010 (8)
C17	0.0121 (10)	0.0159 (11)	0.0143 (10)	0.0014 (8)	0.0058 (8)	0.0010 (8)
C18	0.0093 (10)	0.0171 (11)	0.0119 (10)	0.0001 (8)	0.0023 (8)	0.0018 (8)
O1W	0.0137 (8)	0.0153 (7)	0.0135 (7)	-0.0005 (6)	0.0044 (6)	0.0037 (6)
O2W	0.0187 (8)	0.0174 (8)	0.0304 (9)	0.0010 (6)	0.0123 (7)	0.0074 (7)

Geometric parameters (Å, °)

Cd1—N1	2.2399 (17)	С9—Н9А	0.9300
Cd1—N2	2.2493 (17)	C10-C11	1.388 (3)
Cd1—O1	2.3113 (15)	C10—H10A	0.9300
Cd1—O5	2.3370 (15)	C11—C12	1.387 (3)
Cd1—O3	2.3433 (14)	C11—H11A	0.9300
Cd1—O7	2.3917 (15)	C12-C14	1.525 (3)
O1—C6	1.261 (3)	N3—C15	1.494 (3)

O2—C6	1.244 (3)	N3—H3NA	0.8893
O3—C7	1.262 (2)	N3—H3NB	0.9137
O4—C7	1.255 (2)	N3—H3NC	0.8970
O5—C13	1.269 (2)	N4—C18	1.488 (3)
O6—C13	1.242 (2)	N4—H4NA	0.9110
O7—C14	1.269 (2)	N4—H4NB	0.9372
O8—C14	1.245 (2)	N4—H4NC	0.8628
N1—C5	1.336 (3)	C15—C16	1.517 (3)
N1—C1	1.339 (3)	C15—H15B	0.9700
N2—C12	1.334 (3)	C15—H15C	0.9700
N2—C8	1.342 (3)	C16—C17	1.528 (3)
C1—C2	1.386 (3)	C16—H16B	0.9700
C1—C6	1.526 (3)	C16—H16C	0.9700
C2—C3	1.394 (3)	C17—C18	1.521 (3)
C2—H2A	0.9300	C17—H17A	0.9700
C3—C4	1.397 (3)	C17—H17B	0.9700
С3—НЗА	0.9300	C18—H18A	0.9700
C4—C5	1.388 (3)	C18—H18B	0.9700
C4—H4A	0.9300	O1W—H1WA	0.7580
C5—C7	1.526 (3)	O1W—H1WB	0.7927
C8—C9	1.384 (3)	O2W—H2WA	0.8246
C8—C13	1 523 (3)	O2W—H2WB	0.8183
C9—C10	1.393 (3)		0.0105
N1—Cd1—N2	170.37 (6)	C11—C10—H10A	120.4
N1—Cd1—O1	71.35 (6)	C9—C10—H10A	120.4
N2—Cd1—O1	103.25 (6)	C12—C11—C10	118.90 (19)
N1-Cd1-O5	116.42 (6)	C12—C11—H11A	120.5
N2-Cd1-O5	70 76 (5)	C10-C11-H11A	120.5
01-Cd1-05	89 41 (6)	N2-C12-C11	121 14 (19)
N1-Cd1-O3	70 59 (6)	$N_2 - C_{12} - C_{14}$	115.98 (18)
N_2 —Cd1—O3	115 25 (5)	C11 - C12 - C14	122.87 (18)
01-Cd1-03	141.50(5)	06-013-05	122.07(10) 125.73(19)
05 - Cd1 - 03	141.30(5) 102 30(5)	06-013-08	123.75(19) 118.25(18)
N1 Cd1 07	102.30(5) 102.18(6)	05 C13 C8	116.23(13)
$N_2 Cd1 O7$	102.18(0) 70.31(5)	08 C14 07	110.01(17) 126.69(19)
$\Omega_1 Cd1 \Omega_7$	70.31 (3) 98 60 (5)	08 - 014 - 07	120.03(13) 116.03(18)
05 Cd1 07	98.00 (<i>J</i>)	08 - 014 - 012	110.93(18) 116.27(18)
03 - 01 - 07	141.00(3)	0/-014-012	110.57 (18)
	94.01 (3)	CI5—NS—HSNA	110.0
	118.20 (13)	CIS—N3—H3NB	111.2
C/O3Cal	118.05 (12)	H3NA—N3—H3NB	108.0
	118.57 (13)	C15—N3—H3NC	105.3
C14	117.15 (13)	H3NA—N3—H3NC	109.7
C5—N1—C1	121.14 (18)	H3NB—N3—H3NC	111.9
C5—N1—Cd1	120.09 (14)	C18—N4—H4NA	108.1
C1—N1—Cd1	118.76 (13)	C18—N4—H4NB	107.6
C12—N2—C8	120.84 (18)	H4NA—N4—H4NB	111.3
C12—N2—Cd1	119.97 (13)	C18—N4—H4NC	107.8
C8—N2—Cd1	119.19 (13)	H4NA—N4—H4NC	108.9
N1—C1—C2	121.36 (19)	H4NB—N4—H4NC	112.9

N1—C1—C6	114.67 (18)	N3—C15—C16	112.65 (17)
C2—C1—C6	123.87 (18)	N3—C15—H15B	109.1
C1—C2—C3	118.22 (19)	C16-C15-H15B	109.1
C1—C2—H2A	120.9	N3—C15—H15C	109.1
C3—C2—H2A	120.9	С16—С15—Н15С	109.1
C2—C3—C4	119.8 (2)	H15B—C15—H15C	107.8
С2—С3—НЗА	120.1	C15—C16—C17	112.01 (17)
С4—С3—НЗА	120.1	C15—C16—H16B	109.2
C5—C4—C3	118.46 (19)	C17—C16—H16B	109.2
C5—C4—H4A	120.8	C15—C16—H16C	109.2
C3—C4—H4A	120.8	С17—С16—Н16С	109.2
N1—C5—C4	120.96 (19)	H16B—C16—H16C	107.9
N1—C5—C7	114.49 (18)	C18—C17—C16	112.08 (17)
C4—C5—C7	124.55 (18)	С18—С17—Н17А	109.2
O2—C6—O1	126.3 (2)	С16—С17—Н17А	109.2
O2—C6—C1	116.86 (18)	С18—С17—Н17В	109.2
O1—C6—C1	116.76 (18)	С16—С17—Н17В	109.2
O4—C7—O3	125.23 (19)	H17A—C17—H17B	107.9
O4—C7—C5	118.00 (18)	N4—C18—C17	110.61 (17)
O3—C7—C5	116.76 (17)	N4	109.5
N2—C8—C9	120.98 (18)	C17—C18—H18A	109.5
N2-C8-C13	115.40 (17)	N4—C18—H18B	109.5
C9—C8—C13	123.63 (18)	C17—C18—H18B	109.5
C8—C9—C10	118.89 (19)	H18A—C18—H18B	108.1
С8—С9—Н9А	120.6	H1WA—O1W—H1WB	108.6
С10—С9—Н9А	120.6	H2WA—O2W—H2WB	105.3
С11—С10—С9	119.24 (19)		
N1—Cd1—O1—C6	-3.07 (15)	C1—N1—C5—C7	-178.33 (17)
N2—Cd1—O1—C6	168.63 (15)	Cd1—N1—C5—C7	1.7 (2)
O5—Cd1—O1—C6	-121.31 (16)	C3—C4—C5—N1	0.5 (3)
O3—Cd1—O1—C6	-12.1 (2)	C3—C4—C5—C7	179.94 (19)
O7—Cd1—O1—C6	96.96 (16)	Cd1—O1—C6—O2	178.27 (17)
N1—Cd1—O3—C7	0.66 (14)	Cd1-01-C6-C1	1.3 (2)
N2—Cd1—O3—C7	-171.05 (14)	N1—C1—C6—O2	-174.47 (18)
O1—Cd1—O3—C7	9.71 (18)	C2—C1—C6—O2	2.0 (3)
O5—Cd1—O3—C7	114.61 (14)	N1-C1-C6-O1	2.8 (3)
O7—Cd1—O3—C7	-100.58 (14)	C2-C1-C6-O1	179.3 (2)
N1-Cd1-O5-C13	-170.64 (14)	Cd1—O3—C7—O4	178.78 (16)
N2-Cd1-O5-C13	2.38 (14)	Cd1—O3—C7—C5	0.0 (2)
O1-Cd1-O5-C13	-101.88 (14)	N1—C5—C7—O4	-179.97 (18)
O3—Cd1—O5—C13	115.11 (14)	C4—C5—C7—O4	0.6 (3)
O7—Cd1—O5—C13	1.14 (18)	N1—C5—C7—O3	-1.1 (3)
N1—Cd1—O7—C14	177.80 (14)	C4—C5—C7—O3	179.49 (19)
N2-Cd1-07-C14	4.07 (14)	C12—N2—C8—C9	-0.4 (3)
O1-Cd1-O7-C14	105.15 (14)	Cd1—N2—C8—C9	179.68 (14)
O5—Cd1—O7—C14	5.33 (18)	C12—N2—C8—C13	-179.87 (17)
O3—Cd1—O7—C14	-111.05 (14)	Cd1—N2—C8—C13	0.2 (2)
01—Cd1—N1—C5	-175.36 (16)	N2—C8—C9—C10	0.9 (3)
O5—Cd1—N1—C5	-95.72 (15)	C13—C8—C9—C10	-179.67 (18)

-1.29 (14)	C8—C9—C10—C11	-0.7 (3)
89.55 (15)	C9-C10-C11-C12	0.1 (3)
4.68 (14)	C8—N2—C12—C11	-0.3 (3)
84.32 (15)	Cd1—N2—C12—C11	179.66 (14)
178.74 (16)	C8—N2—C12—C14	-179.80 (17)
-90.41 (15)	Cd1—N2—C12—C14	0.1 (2)
-96.51 (15)	C10-C11-C12-N2	0.4 (3)
178.85 (16)	C10-C11-C12-C14	179.90 (18)
83.98 (15)	Cd1—O5—C13—O6	176.78 (16)
-1.98 (14)	Cd1	-3.1 (2)
83.43 (15)	N2-C8-C13-O6	-177.92 (17)
-1.21 (13)	C9—C8—C13—O6	2.6 (3)
-96.08 (14)	N2-C8-C13-O5	1.9 (3)
177.96 (16)	C9—C8—C13—O5	-177.53 (19)
-2.2 (3)	Cd1	175.41 (16)
177.80 (15)	Cd1-07-C14-C12	-5.4 (2)
174.40 (18)	N2-C12-C14-O8	-177.06 (17)
-5.6 (2)	C11—C12—C14—O8	3.4 (3)
1.4 (3)	N2-C12-C14-O7	3.6 (3)
-174.79 (19)	C11—C12—C14—O7	-175.88 (19)
0.2 (3)	N3-C15-C16-C17	175.10 (17)
0.2 (3) -1.2 (3)	N3—C15—C16—C17 C15—C16—C17—C18	175.10 (17) 61.0 (2)
0.2 (3) -1.2 (3) 1.1 (3)	N3—C15—C16—C17 C15—C16—C17—C18 C16—C17—C18—N4	175.10 (17) 61.0 (2) 174.37 (17)
	-1.29 (14) 89.55 (15) 4.68 (14) 84.32 (15) 178.74 (16) -90.41 (15) -96.51 (15) 178.85 (16) 83.98 (15) -1.98 (14) 83.43 (15) -1.21 (13) -96.08 (14) 177.96 (16) -2.2 (3) 177.80 (15) 174.40 (18) -5.6 (2) 1.4 (3) -174.79 (19)	-1.29(14) $C8-C9-C10-C11$ $89.55(15)$ $C9-C10-C11-C12$ $4.68(14)$ $C8-N2-C12-C11$ $84.32(15)$ $Cd1-N2-C12-C11$ $178.74(16)$ $C8-N2-C12-C14$ $-90.41(15)$ $Cd1-N2-C12-C14$ $-96.51(15)$ $C10-C11-C12-N2$ $178.85(16)$ $C10-C11-C12-C14$ $83.98(15)$ $Cd1-O5-C13-O6$ $-1.98(14)$ $Cd1-O5-C13-O6$ $-1.21(13)$ $C9-C8-C13-O6$ $-96.08(14)$ $N2-C8-C13-O5$ $177.96(16)$ $C9-C8-C13-O5$ $177.80(15)$ $Cd1-O7-C14-O8$ $177.80(15)$ $Cd1-O7-C14-O8$ $174.40(18)$ $N2-C12-C14-O8$ $-5.6(2)$ $C11-C12-C14-O7$ $-174.79(19)$ $C11-C12-C14-O7$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3NA···O2W	0.89	1.90	2.782 (2)	169
N3—H3NB···O7 ⁱ	0.91	1.93	2.823 (2)	166
N3—H3NC···O4 ⁱⁱ	0.90	1.93	2.784 (2)	159
N4—H4NA···O8 ⁱⁱ	0.91	1.99	2.821 (3)	152
N4—H4NB…O6 ⁱⁱⁱ	0.94	1.93	2.865 (2)	176
N4—H4NC…O1W ^{iv}	0.86	1.94	2.797 (2)	175
O1W—H1WA···O5 ^{iv}	0.76	1.92	2.678 (2)	173
O1W—H1WB···O2	0.79	1.87	2.653 (2)	172
$O2W$ — $H2WA$ ··· $O4^{v}$	0.82	1.99	2.809 (2)	175
O2W—H2WB···O1W	0.82	1.97	2.781 (2)	170
Summature addage (i) $u = 1$ $u = v$ (ii) $u = 1$ $u = v$ (iii) u	1 + 2/2 = + 2/2 (iv)	-1 + 1 + (-1) + (-1) + 1		

Symmetry codes: (i) x-1, y, z; (ii) x-1, y, z+1; (iii) x, -y+3/2, z+3/2; (iv) x, y, z+1; (v) -x+1, -y+2, -z.

Fig. 2

